
90 CommuniCations oF the aCm | juLy 2012 | voL. 55 | no. 7

review articles

Behavioral
Programming

Doi:10.1145/2209249.2209270

A novel paradigm for programming reactive
systems centered on naturally specified
modular behavior.

BY DaViD haReL, assaF maRRon, anD GeRa Weiss

sPeLLing oUT The requirements for a software system
under development is not an easy task, and translating
captured requirements into correct operational software
can be even harder. Many technologies (languages,
modeling tools, programming paradigms) and
methodologies (agile, test-driven, model-driven) were
designed, among other things, to help address these
challenges. One widely accepted practice is to formalize
requirements in the form of use cases and scenarios.
Our work extends this approach into using scenarios
for actual programming. Specifically, we propose
scenario-coding techniques and design approaches for
constructing reactive systems28 incrementally from their
expected behaviors.

The work on behavioral programming began
with scenario-based programming, a way to create
executable specifications of reactive systems,
introduced through the language of live sequence
charts (LSC) and its Play-Engine implementation.11,21
The initial purpose was to enable testing and refining
specifications and prototypes, and it was later
extended toward building actual systems. To this end,
the underlying behavioral principles have also been
implemented in Java via the BPJ package25 and in
additional environments,26,34,42,43 adding a programming
point of view to that of requirement specification.

To illustrate the naturalness of con-
structing systems by composing be-
haviors, consider how children may be
taught, step-by-step, to play strategy
games (See Gordon et al.14). For exam-
ple, in teaching the game of Tic-Tac-
Toe, we first describe rules of the game,
such as:

EnforceTurns: To play, one player
marks a square in a 3 by 3 grid with X,
then the other player marks a square
with O, then X plays again, and so on;

SquareTaken: Once a square is
marked, it cannot be marked again;

DetectXWin/DetectOWin: When
a player places three of his or her marks
in a horizontal, vertical, or diagonal
line, the player wins;

Now we may already start playing.
Later, the child may infer, or the teach-
er may suggest, some tactics:

AddThirdO: After placing two Os in
a line, the O player should try to mark
the third square (to win the game);

PreventThirdX: After the X player
marks two squares in a line, the O play-
er should try to mark the third square
(to foil the attack); and

DefaultOMoves: When other tac-
tics are not applicable, player O should
prefer the center square, then the cor-

 key insights

 Behavioral programming is a novel,
language-independent paradigm for
programming reactive systems, centered
on natural and incremental specification
of behavior, and implemented in the visual
formalism of live sequence charts (LsC),
and in the BPJ Java package.

 the approach allows coding
applications as multi-modal scenarios,
each corresponding to an individual
requirement, specifying what can, must,
or may not happen following certain
sequences of events.

 to facilitate full behavioral modularity
via the independent coding of separate
facets of behavior, all scenarios run
simultaneously, and all are consulted at
every decision point during execution.

 the paradigm is supported by tools
for debugging, execution planning,
learning-based adaptivity, and
model-checking for early detection of
conflicting and incomplete requirements.

juLy 2012 | voL. 55 | no. 7 | CommuniCations oF the aCm 91

ners, and mark an edge square only
when there is no other choice.

Such required behaviors can be cod-
ed in executable software modules using
behavioral programming idioms and
infrastructure, as we will detail. Full be-
havioral implementations of the game
exist in Java25 and Erlang.43 In Harel et
al.20 we show how model-checking tech-
nologies allow discovery of unhandled
scenarios, enabling the user to incre-
mentally develop behaviors for new tac-
tics (and forgotten rules) until a software

system is achieved that plays legally and
assures the computer never loses.

This example already suggests the
following advantages of behavioral
programming. First, we were able to
code the application incrementally in
modules that are aligned with the re-
quirements (game rules and tactics),
as perceived by users and program-
mers. Second, we added new tactics
and rules (and still more can be add-
ed) without changing, or even looking
at, existing code. Third, the resulting

product is modular, in that tactics
and rules can be flexibly added and re-
moved to create versions with different
functionalities, for example, to play at
different expertise levels.

Naturally, composing behaviors
that were programmed without di-
rect consideration of mutual de-
pendencies raises questions about
conflicting requirements, under-
specification, and synchronization.
We deal with these issues by using
composition operators that allow i

l
l

u
s

t
r

a
t

i
o

n
 b

y
 l

e
a

n
d

r
o

 C
a

s
t

e
l

a
o

92 COMMUNICATIONS OF THE ACM | JULY 2012 | VOL. 55 | NO. 7

review articles

both adding and forbidding behav-
iors, analysis tools such as model
checkers, and architectures for large-
scale applications.

In this article, we present the prin-
ciples of behavioral programming and
illustrate how to program behavioral
applications in Java. We detail visual

behavioral programming with the LSC
language and elaborate on how one
deals with conflicting behaviors, un-
derspecification, and a large number
of simultaneous behaviors. We con-
clude with a comparison to other devel-
opment approaches, applications, and
future research.

Basic Behavioral Idioms
We propose the term behavioral ap-
plication for software consisting of
independent components (called
b-threads) that generate a flow of
events via an enhanced publish/sub-
scribe protocol, as follows (see Fig-
ure 1). Each b-thread is a procedure
that runs in parallel to the other b-
threads. When a b-thread reaches a
point that requires synchronization,
it waits until all other b-threads reach
synchronization points in their own
flow. At synchronization points, each
b-thread specifies three sets of events:
requested events: the thread proposes
that these be considered for trigger-
ing, and asks to be notified when any
of them occurs; waited-for events: the
thread does not request these, but
asks to be notified when any of them
is triggered; and blocked events: the
thread currently forbids triggering
any of these events.

When all b-threads are at a synchro-
nization point, an event is chosen, that
is requested by at least one b-thread
and is not blocked by any b-thread.
The selected event is then triggered by
resuming all the b-threads that either
requested it or are waiting for it. Each
of these resumed b-threads then pro-
ceeds with its execution, all the way to
its next synchronization point, where
it again presents new sets of request-
ed, waited-for and blocked events. The
other b-threads remain at their last
synchronization points, oblivious to
the triggered event, until an event is
selected that they have requested or
are waiting for. When all b-threads are
again at a synchronization point, the
event selection process repeats. For a
formal definition of this process see
Harel et al.25,26

When more than one event is re-
quested and not blocked, the seman-
tics of event selection may vary. For ex-
ample, the selection may be arbitrary
or random, as in the default (a.k.a. naïve)
semantics of the LSC Play-Engine;21

Figure 1. A schematic view of the execution cycle of behavior threads using an enhanced
publish/subscribe protocol.

1. All behavior threads synchronize and place their “bids”:

 ˲ Requesting an event: proposing that the event be considered for triggering, and asking to be

notified when it is triggered;

 ˲ Waiting for an event: without proposing its triggering, asking to be notified when the event is

triggered;

 ˲ Blocking an event: forbidding the triggering of the event, vetoing requests of other behavior

threads.

2. An event that is requested and not blocked is selected;

3. The behavior threads that requested or wait for the selected event are notified;

4. The notified behavior threads progress to their next states, where they place new bids.

Requested Events
behavior
thread

behavior
thread

behavior
thread

behavior
thread

Blocking

Selected Event

Figure 2. B-threads for increasing water flow.

The first two b-threads
request addHot and
addCold three times,
respectively. The third
b-thread, Interleave,
repeatedly waits for
addHot while blocking
addCold and vice versa,
forcing alternation of
these events. Without
Interleave, the run would
be three addHot followed
by three addCold, due
to b-thread priorities.

Figure 2. B-threads for increasing water flow. The first two b-threads request the events
addHot and addCold three times, respectively. The third b-thread, Interleave, repeatedly
waits for addHot while blocking addCold and vice versa, forcing alternation of these
events. Without Interleave, the run would be three addHot followed by three addCold,
due to b-thread priorities.

class AddHotThreeTimes extends BThread {
 public void runBThread() {
 for (int i = 1; i <= 3; i++) {
 bp.bSync(addHot, none, none);
 }
 }
}

class AddColdThreeTimes extends BThread {
 public void runBThread() {
 for (int i = 1; i <= 3; i++) {
 bp.bSync(addCold, none, none);
 }
 }
}

class Interleave extends BThread
 public void runBThread() {
 while (true) {
 bp.bSync(none, addHot, addCold);
 bp.bSync(none, addCold, addHot);
 }
 }
}

addHot
 addCold
addHot
 addCold
addHot
 addCold

Event log of
the coordinated run

review articles

JULY 2012 | VOL. 55 | NO. 7 | COMMUNICATIONS OF THE ACM 93

choices may depend on some priority
order, as in standard BPJ execution; the
mechanism may use look-ahead sub-
ject to desired properties of the result-
ing event sequence, as in smart play-
out19,29 in LSC; it may vary over time,
based on learning;13 or, as in Kugler et
al.,34 the entire execution may diverge
into multiple concurrent paths.

The programming idioms of re-
quest, wait for, block thus express multi-
modality. Reminiscent of modal verbs
in a natural language (such as shall,
can or mustn’t), they state not only what
must be done (and how) as in standard
programming, but also what may be
done, and, more uniquely to behavior-
al programming, what is forbidden and
therefore must not be done.

Behavioral programming prin-
ciples can be readily implemented
as part of different languages and
programming approaches, with pos-
sible variations of idioms. In addition
to Java with the BPJ package25 (dis-
cussed later in more detail) we have
implemented them in the functional
language Erlang26,43 and Shimony et
al.42 applied them in the PicOS envi-
ronment using C. Implementations
in visual contexts beyond the original
Play-Engine include PlayGo23 and SBT
by Kugler et al.34

In behavioral programming, all
one must do in order to start develop-
ing and experimenting with scenarios
that will later constitute the final sys-
tem, is to determine the common set
of events that are relevant to these sce-
narios. While this still requires con-
templation, it is often easier to answer
the question “what are the events?”
than “which are the objects/functions,
etc.?” By default, events are opaque en-
tities carrying nothing but their name,
but they may be extended with rich
data and functionality.

Programming Behaviors In Java
Our implementation of behavioral pro-
gramming in Java uses the BPJ pack-
age.25 With BPJ, each behavior thread
is an instance of the class BThread.
Events are instances of the class
Event or classes that extend it (mainly
for adding data to events). The logic
of each behavior is coded as a method
supplied by the programmer, which
in turn invokes the method bSync to
synchronize with other behaviors, and

to specify its requested, waited-for and
blocked events as follows:

bSync(requestedEvents,
 waitedForEvents,
 blockedEvents);

By calling bSync the b-thread sus-
pends itself until all other b-threads
are at a synchronization point and
is resumed when an event that it re-
quested or waited for is selected, as
described below.

To enforce predictable and repeat-
able execution, we require that the
event selected at each synchronization
point be uniquely defined. To this end,
the programmer assigns a unique pri-
ority to each b-thread, and places the
requested events of each b-thread in an
ordered set. The event selection mech-
anism in BPJ then uses this ordering to
choose the first event that is requested
and not blocked.

The source code package of BPJ is
available online at http://www.b-prog.
org with examples and video demon-
strations.

Example: Water flow control. To il-
lustrate how these constructs can be
used to allow new behaviors to non-
intrusively affect existing ones, con-
sider scenarios that are part of a system

that controls hot and cold water taps,
whose output flows are mixed.

As shown in Figure 2, let AddHot-
ThreeTimes be a b-thread that re-
quests three times the event of opening
the hot water-tap some small amount
(addHot), and then stops. The b-thread
AddColdThreeTimes performs a sim-
ilar action on the cold water tap (with
the event addCold). To increase water
flow in both taps more or less at the
same time, as may be desired for keep-
ing the temperature stable, we activate
the above b-threads alongside a third
one, Interleave, which forces the al-
ternation of their events. Interleave
repeatedly waits for addHot while
blocking addCold, followed by waiting
for addCold while blocking addHot.
Later, we illustrate a similar program
written in the visual LSC language.

Behavioral execution can be further
analyzed with table-like visuals, as in
Figure 3, which was generated by the
TraceVis trace-comprehension and
debugging tool.12 Briefly, b-threads
are depicted in columns ordered by
priority, and successive synchroniza-
tion points and associated triggered
events appear in rows intersecting
the b-thread columns. Each table cell
describes a b-thread’s state at a given
synchronization point. The sets of

Figure 3. Visualizing an execution of the water-tap application with TraceVis. Selected
events are marked with a green star; blocked events are marked with a red square; cells
marked R/W/B show requested, waited for, and blocked events.

AddHotThreeTimes
Leader

R

1 AddHot

AddHot

W

B

Leader Active
AddColdThreeTimes Interleave

2 AddCold

3 AddHot

4 AddCold

Reset

R AddCold

W

B

R

AddHotW

B

R AddCold

AddCold

R

AddColdW

B AddHot

W

B

R AddHot

W

B

R AddHot

W

B

R

AddHotW

B

R AddCold

AddCold

W

B

R AddCold

W

B

R

AddColdW

B AddHot

R AddHot

W

B

94 CommuniCations oF the aCm | juLy 2012 | voL. 55 | no. 7

review articles

requested, waited-for, and blocked
events are shown in sub-cells marked
R, W, and B respectively. In each row,
all appearances of the selected event
are marked with a green star, and re-
quested events that are blocked are
marked by red squares, providing in-
sight into the rationale of event selec-
tion and b-thread progression. The cell
containing the request that drove the
event triggering is emphasized with
a bold border, and cells of b-threads
that did not advance are marked by a
dashed border.

Example: Strategies for Tic-Tac-Toe.
Behavioral programming supports in-
cremental development, where new
behaviors may be added non-intru-
sively, that is, with little or no change
to existing code. We demonstrate this
trait with an application for playing
the game of Tic-Tac-Toe, described in
detail in Harel et al.25 As outlined in
the introduction, players X (a human)
and O (the computer) alternately mark
squares on a grid of 3 rows by 3 col-
umns, each attempting to place three
of her marks in a full horizontal, verti-
cal or diagonal line. Each marking of
a square labeled árow, colñ is repre-
sented by a move event, Xárow,colñ or
Oárow,colñ. The events XWin, OWin
and Draw mark possible conclusions
of the game.

A play of the game can be described
as a sequence of events. For example,
the sequence Xá0,0ñ, Oá1,1ñ, Xá2,1ñ,
Oá0,2ñ, Xá2,0ñ, Oá1,0ñ, Xá2,2ñ, XWin,
describes a play in which X wins, and
whose final configuration is depicted
in Figure 4.

We describe the incremental de-
velopment of all the b-thread classes
needed for the rules and tactics in
Harel et al.25 Here, we describe the flow
of some of the b-threads to illustrate
how the natural language descriptions
in the beginning of the article, can be
translated to code which includes calls
to bSync. The b-thread for the game-
rule SquareTaken, for example, first
calls bSync to wait for any X or O event
and then calls bSync again to block
all events in the newly marked square.
As another example, the b-thread De-
faultOMoves uses a Java loop to re-
peatedly request (by calling bSync)
the set of all nine possible O moves
ordered with center first, then corners,
and then edge squares. An example of
a longer scenario is AddThirdO, which
waits for an O event, then waits for an-
other O event in the same line, and
then requests an O event marking the
third square in the line.

To demonstrate incremental devel-
opment, consider how when we learn
that our defense behaviors are insuffi-
cient against a corner-center-corner at-
tack (for example, Xá0,0ñ, Oá1,1ñ, Xá2,2ñ)
for which the only defense is a coun-
terattack, we can add a b-thread as fol-
lows. To foil X’s plan, the new b-thread
waits for this sequence of events (and
equivalent ones), and attacks back
by requesting the move Oá0,1ñ. Later,
we discuss how this development ap-
proach can be enhanced using a mod-
el-checking tool.

B-threads may autonomously watch
out for very specific sequences of events
embedded in larger traces, with expres-
siveness that goes beyond responding
to a single event or to a combination
of conditions, as is common in basic
rule engines. Moreover, in our experi-
ence, a given “world configuration” or
a complete event sequence may be as-
signed different meanings by different
behaviors as they individually work to-
ward different goals. For example, De-
tectXWin and PreventThirdX can
independently observe the same two X
moves in the same line, but while the
former then waits for another X move
toward announcing a win, the latter
proceeds to make an O move in the third
square to prevent a loss. In fact, most of
our Tic-Tac-Toe b-threads do not check
the game configuration; for example, a
b-thread DetectDraw counts any nine

moves and declares the end of the game
with no winner, and PreventThirdX
ignores O moves before requesting its
own desired move.

Focusing on a narrow facet of a be-
havior can simplify the b-thread and
can be accomplished by instantiat-
ing copies of it with different param-
eters. For example, we implemented
SquareTaken with an instance for
each square, and DetectXWin with an
instance for each permutation of three
X events in each line.

The autonomy afforded by a narrow
world view is facilitated also by the fact
that all b-threads that request a given
event at a particular synchronization
point are notified when it occurs, and
are unaware of whether the selected re-
quest was theirs or came from another
b-thread. For example, a single mark-
ing of an O in a particular square could
result from simultaneous requests by
the AddThirdO, PreventThirdX,
and DefaultOMoves b-threads. Us-
ing blocking and priorities, autono-
mous b-threads can “carve out” un-
desired behaviors of other b-threads,
as, say, with coding DefaultOmoves
to repeatedly ask for the same set of
events without checking which one
was triggered, and then adding the b-
thread SquareTaken.

Example: Real-time aircraft stabili-
zation. Given the principles described
so far, one may ask how behavioral pro-
grams deal with external events, such
as physical ones originating in the en-
vironment, or user actions. This sec-
tion briefly introduces elements that
can serve in a layer above the behav-
ioral programming infrastructure for
development of real-time systems. See
Harel et al.26 for more details.

Behavioral applications can de-
tect external events at any time, using
all the features available in the host
language, and can introduce them as
behavioral events in the next synchro-
nization point. For the integration of
behavioral and non-behavioral parts of
an application, we adopt the following
scheme, based on the concept of super-
steps, which is similar to the timing se-
mantics of Statecharts.27

The first super-step begins when
the system starts. Then, internal b-
thread-driven events are triggered
until there are no more such events
to trigger. At this point the behavioral

Figure 4. the tic-tac-toe gameboard
configuration following the move events
Xá0,0ñ, Oá1,1ñ, Xá2,1ñ, Oá0,2ñ,
Xá2,0ñ, Oá1,0ñ, Xá2,2ñ.

review articles

juLy 2012 | voL. 55 | no. 7 | CommuniCations oF the aCm 95

system halts, all b-threads are inside a
bSync method call, and the system is
waiting for an external event. When an
external event occurs and introduced
as a behavioral one, it marks the begin-
ning of a new super-step, which then
continues until there are no events to
trigger, and so on. We propose a con-
vention, whereby external events are
not introduced as behavioral events as
long as there are other internal events
to trigger. In LSC, this is enforced by
the Play-Engine and PlayGo tools. In
BPJ, the programmer can assign to
a b-thread that introduces external
events a priority lower than that of any
b-thread that may request other (inter-
nal) events at the same time. One may
view the super-step as an ordered se-
quence of events, which ideally takes
“zero time,” as in Berry’s synchrony
hypothesis4 and in Statecharts,27 and
similar to hybrid time sets and logical
execution time (LET) design.31

We now outline parts of the soft-
ware for controlling a quadrotor, an
aircraft lifted and propelled by four
fixed rotors, as detailed in Harel et al.26
One of the challenges in stabilizing a
quadrotor is using a fixed set of con-
trols, namely the rotors’ speed (RPM),
to balance competing goals like de-
sired forces and moments along differ-
ent axes: flight direction, roll (side-to-
side), pitch (raising and lowering the
front), and yaw (rotation of the entire
quadrotor). These goals compete with
each other as changes in any rotor
speed may affect multiple forces. For
example, changing the back rotor’s
RPM affects the thrust, the pitch and
the yaw. Behavioral programming al-
lows decomposing the application into
b-threads, each of which takes care of
only one force. For example, “when
thrust is too low, request the increase
of at least one of the rotors’ RPM and
block the decrease of all rotors’ RPM”
or “when pitch angle is too high, re-
quest the increase of the back rotor’s
RPM or the decrease of the front rotor’s
RPM while blocking the increase of the
back rotor’s RPM and the decrease of
the front rotor’s RPM.” Note that the
event selection mechanism will weave
these two behavior threads, in such
a way that when the thrust is too low
and the pitch is too high, only the back
rotor’s RPM will increase, address-
ing both deviations. To fix deviations

of different sizes, many small RPM-
change events occur before new input
of desired forces is obtained in the next
super-step. The actual b-threads are
more involved than those shown here,
but they maintain their naturalness
and independence. For a fuzzy-logic
based approach to implementing con-
trol with behavioral programming, see
Harel et al.24

Live sequence Charts
The visual language of live sequence
charts (LSC) introduced scenario-
based programming, and implicitly
also the basic concepts of behavioral
programming; see Damm and Harel.11
One continuation of that work was the
invention of the play-in and play-out
techniques for constructing and exe-
cuting LSCs, which were implemented
in the Play-Engine tool.21 A more re-
cent tool, PlayGo, has been developed,
and is currently being extended and
strengthened.23 The LSC approach
also inspired the SBT tool.34 While the
current status of these tools does not
yet enable broad usage in real-world
applications, the versatility of the LSC
language has been demonstrated in
various application domains, includ-
ing hardware, telecommunication,
production control, tactical simula-
tors, and biological modeling.2,10,41

LSC adds liveness and execution
semantics to behaviors described us-
ing message sequence charts (MSC) by
extending MSC with modalities, sym-
bolic instances, and more. An MSC de-

picts behavior using vertical lifelines
to represent objects and horizontal
arrows for messages passed between
them, with time flowing from top to
bottom. This yields a partial order for
occurrences of the events in a chart.
However, the expressive power of MSC
is limited,11 as these charts describe
possible scenarios and cannot specify,
for example, what is mandated or what
is not allowed. In fact, given a set of
objects and events, a system that gen-
erates all possible sequences of events
would satisfy any MSC.

To address this, in a live sequence
chart one can distinguish what must
happen (called hot in LSC terminol-
ogy, and colored red) from what may
happen (termed cold, and colored
blue), and can also express what is not
allowed to happen (forbidden). More-
over, event specifications that are to be
executed in a proactive manner can be
distinguished from ones that specify
monitoring; that is, merely tracking
the event. LSC also distinguishes be-
tween universal charts, which depict
executions that are to apply to all runs,
and existential charts—which serve as
“examples” and are required to apply
only to at least one run. A universal
LSC consists of a prechart and a main
chart, as in Figure 5. The semantics
is that if and when the behavior de-
scribed by the prechart occurs, the
behavior described by the main chart
must occur too.

Using a designated chart area, one
can forbid occurrence of events at

Figure 5. a universal LsC. Whenever a telephone user presses the sequence of a star,
a digit, and send (see hexagonal prechart), the chip must retrieve the corresponding
number from memory and call it by sending a message to the environment. if a busy
signal is returned, the call must be tried up to three times. the events in the main chart
may occur only in the order specified.

* Keyboard

Click

Send key Chip Memory ENV

Retrieve (digit)

3

number

Call(number)

signal

signal busy

Click
Click (digit)

96 COMMUNICATIONS OF THE ACM | JULY 2012 | VOL. 55 | NO. 7

review articles

certain times. There are other ways to
forbid things from occurring; one of
which is done by indicating that events
in the main chart must occur only in
the specified (partial) order. For ex-
ample, one can specify that when the
main chart is active, events that appear
in the chart but are not presently en-
abled cannot be triggered at that point
in time by other charts.

A modest view of LSC considers it
to be a requirements and specification
language for making assertions about
sequences of events. In this view, a sys-
tem satisfies an LSC specification if all
its runs satisfy all the universal charts
in the specification, and for each exis-
tential chart, there is at least one run
that satisfies it.

However, the play-out technique fa-
cilitates the execution of an LSC speci-
fication, that is, a collection of charts,
just like any computer program. Play-
out does this by tracking events that
may be selected next in all lifelines
in all charts, selecting and triggering
events subject to the must/may/forbid-
den modalities, and advancing affect-
ed charts accordingly.21 As described
in more detail below, play-out may
be viewed as interpreting charts with
modal events as threads of behavior
with their requested, waited-for, and
blocked events.

A dialect of LSC has been designed
to be compliant with UML 2.0,22 and
can be defined as a profile therein.
Instead of precharts it uses solid and
dashed arrows to indicate whether an

event is to be executed or is only moni-
tored, while the red and blue color
retain their respective modalities of
must and may. The PlayGo tool18,23 is
currently based on this version of the
language. Figure 6 depicts a PlayGo
example similar to the water-tap appli-
cation discussed earlier, with the addi-
tion of the user pressing a start button
to activate all scenarios.

Internally, the LSC play-out mecha-
nism uses the request / wait / block
idioms for collective execution, as fol-
lows. Initially, the next enabled event
for each lifeline in each chart is the top-
most event in the lifeline. All enabled
events on all lifelines are considered
waited-for. All enabled events that are
also to be executed (and not just moni-
tored) are considered also as request-
ed. All events that are forbidden, either
explicitly or implicitly, are considered
blocked. An event that is requested and
not blocked is then triggered. When
no event can be triggered, the system
waits for an event from the user or the
environment. When an event is trig-
gered, a rich unification algorithm de-
termines which event specifications in
different charts refer to that event, and
all lifelines in which it is enabled are
advanced to their next state. Whenever
this advancing causes a prechart to be
completed, the main chart portion of
the chart is activated. When a forbid-
den event nevertheless occurs, for ex-
ample, as driven by the environment
or the user, a violation occurs and the
execution terminates.

This process is often referred to
as naïve play-out. In a more advanced
mechanism, called smart play-out19,29
the Play-Engine uses either model-
checking or AI planning algorithms
to look ahead, in an attempt to select
events in ways that do not eventually
lead to violation of the specification
or deadlock.

In addition to the interpreter-like
approach of play-out, a compiler for
LSC has been developed, which pro-
duces executable code by compiling
the specification into Java and weaving
the results with AspectJ.38

One notable difference between LSC
and the BPJ package is that BPJ benefits
from the power of the Java host lan-
guage. By contrast, the LSC language
provides its own constructs for objects
and properties, flow of control, excep-
tions, variables, symbolic objects and
messages, a notion of time, sub-chart
scope, access to functions in other lan-
guages, and external communication.21

Play-in. An essential element of
programming is the process by which
programmers perform actual coding.
In behavioral programming, it seems
only natural to allow this activity to
include walking through a scenario,
generating events and sequences
thereof, and using them in specifying
what we want done or forbidden. To-
ward that purpose, the LSC language
allows a new way of coding, called
play-in,15,21 which captures scenarios
as follows: whenever possible, the de-
veloper actually performs the event—

Figure 6. UML-compliant LSCs. Each chart begins with the user pressing the start button. Two charts request tap-turning events, and the
third causes their interleaving by alternately waiting for these events. Events can occur only when enabled for triggering in all charts in
which they appear. The SYNC construct forces order between events in different lifelines.

AddHotThreeTimes

User

LSC

startButton

start()

addHot()

SYNC

hotWater

addHot()

addHot()

AddColdThreeTimes

User

LSC

startButton

start()

addCold()

SYNC

hotWater

addCold()

addCold()

Interleave

User

LSC

startButton

start()

addHot()

hotWater coldWater

addCold()

SYNC

SYNC

loop

[–1,–1]

review articles

juLy 2012 | voL. 55 | no. 7 | CommuniCations oF the aCm 97

for example, by pressing “send” on a
telephone—and the tool captures the
event and includes it as part of the
gradually generated LSC. The reader
is referred to Harel and Marelly21 and
the Web site http://www.wisdom.weiz-
mann.ac.il/~playbook for more details.

Play-in is similar to programming
by example37 in that both try to make
programming easier for humans us-
ing visualization and physical actions,
and the approaches can certainly gain
from one another. The main differ-
ence is that programming by example
is a way to avoid writing code in small
programs, for educational purposes,
where play-in is intended for use as
part of programming modal scenar-
ios to be executed collectively as a
complex system.

Can it Work in the Real World?
In way of trying to tackle such ques-
tions as “can the approach deal with
conflicts and underspecification?” or
“can one coordinate thousands of si-
multaneous behaviors?” we outline
some relevant research results.

One concern associated with align-
ing application scenarios with require-
ments is that individually valid require-
ments may conflict. Thus, coding them
independently of each other and com-
posing them without consideration
may yield undesired joint behavior.

We first observe that, as described,
our approach suggests resolving con-
flicts using new b-threads and priori-
ties. For example, in Tic-Tac-Toe, the
conflict (which may emerge very early
in development) concerning both
players requesting a move at the same
time, is resolved by a b-thread that
enforces turn alternation. Similarly, a
conflict between a defensive move and
a move that yields an immediate win is
resolved by prioritizing the latter.

Further, we present a methodol-
ogy and a supporting model-check-
ing tool (called BPmc) for verifying
behavioral programs without having
to first translate them into a spe-
cific input language for the model
checker.20 Our method facilitates
early discovery of conflicting or un-
derspecified scenarios. For example,
when model-checking a behavioral
Tic-Tac-Toe application, the coun-
terexample Xá0,0ñ, Oá1,1ñ, Xá0,1ñ,
Oá0,2ñ, Xá2,0ñ, Oá2,2ñ, Xá1,0ñ suggests

(as described earlier) that the victory
of X could have been avoided had the
application played Oá1,0ñ in its last
turn, preventing the completion of
three X marks in a line, instead of its
default preference to mark corners.
Note that in coding refinements and
corrections, counterexamples pro-
vided by the tool can be used directly
since they are sequences of events.
See Harel et al.17 for an application of
this property to the automatic local
repair of behavioral programs.

From the model-checking perspec-
tive, the BPmc tool (which currently
applies to our Java implementation of
behavioral programming) reduces the
size of the state-space of a Java pro-
gram using an abstraction that focuses
on the behaviorally interesting states
and treats transitions between them
as atomic. To the existing standard ex-
ecution control, which consists of de-
terministic progression along a single
path in the behavioral program state
graph, we add two model-checking ex-
ecution modes: safety and liveness. The
safety mode explores the different paths
in the graph in search of a state that vio-
lates the given safety property, while
the liveness mode seeks cycles that
violate the given liveness property. The
graph traversal in BPmc is carried
out with established model check-
ing algorithms and uses the Apache
javaflow package to save and restore
continuations—objects that hold the
states of participating threads—for the
required backtracking.

Synthesis techniques have also been
applied to LSC, in order to check for
conflicts and, when possible, to gen-
erate a program that correctly imple-
ments a system complying with the
specification.30,35

Model checking and planning algo-
rithms are used when running LSCs to
help avoid conflicts when these can be
resolved via “smart” event selection us-
ing look-ahead within a super-step.19,29
Future research directions include
applying BPmc to achieve look-ahead
in Java execution too, as well as going
beyond a single super-step in the smart
play-out method in LSC.

As for underspecification and
adaptability, it is well accepted in soft-
ware engineering that a requirements
document is never really complete,16
and that new requirements keep

Play-in is similar
to programming
by example in that
both try to make
programming easier
for humans using
visualization and
physical actions,
and the approaches
can certainly gain
from one another.

98 CommuniCations oF the aCm | juLy 2012 | voL. 55 | no. 7

review articles

emerging as developers and users
learn about and experiment with the
developed system.

Similarly to the case of conflicts,
new requirements in behavioral pro-
gramming can often be coded as new
behaviors. For example, while develop-
ing the quadrotor application we real-
ized that rotor speed (RPM) cannot be
negative. We solved this by adding a
b-thread that blocks speed reduction
events when the speed is too low.

Obviously, both model checking and
the look-ahead mentioned here may
help detect and deal with such under-
specification. The problem can also be
handled by making the program learn
and adapt as part of its development.
For example, extending the semantics
of behavioral programming with rein-
forcements allows applications that
also specify, in addition to what should
be done or not done at every step, broad-
er goals.13 Reinforcements are captured
by b-threads, each one contributing a
narrow assessment of the current situ-
ation relative to a longer-term goal. Le-
veraging the unique structure of behav-
ioral programs, an application-agnostic
learning mechanism translates the re-
inforcements into event-selection deci-
sions that improve over time. This abil-
ity to learn and adapt allows removal of
the need for a total order on b-threads
and event requests, thus simplifying
development. For example, a salad-
making robot is specified in Eitan and
Harel,13 with scenarios for picking up
vegetables, and washing, cutting, and
serving them in designated locations.
With the help of reinforcements, the
robot learns to perform these tasks in
the correct order, while overcoming ob-
stacles in the kitchen and dealing with
refueling tasks.

Another concern around behavioral
programming execution is that if one di-
vergent b-thread (a runaway) fails to syn-
chronize, the entire application stops.
The problem is of course aggravated
when many behaviors are involved.

As described in Harel et al.26 and
following the work in Barak et al.,3 we
expect that in large behavioral applica-
tions not all behaviors will be required
to synchronize with each other. In-
stead, we anticipate that synchroniza-
tion requirements will be reduced by
dividing large numbers of naturally
specified behaviors into nodes; each of

different modularization may cause
scenario encodings to be more subtle;
rendering them visible only at run-
time. One of the main contributions
of behavioral programming is the abil-
ity to program multimodal scenarios
incrementally using modules that are
aligned with requirements.16

Relative to object-oriented program-
ming, behavioral modules and events
may involve objects, but they are not
necessarily anchored to a single one.
When programming behaviorally, one
focuses on system behavior, and less
on identifying actors. Often, behavior
threads represent inter-object scenari-
os that are not directly visible when the
software is implemented as methods
of individual objects. The states of such
scenarios often conveniently replace or
complement data in standard objects.

Ideas for using behaviors that are
specified as refinements and con-
straints over other modules are dis-
cussed in the context of superimposi-
tions.7 Behavioral programming offers
practical programming mechanisms
for implementing implicit, indirect
control of one behavior over all other
relevant behaviors, without explicit
references from a controlling or con-
straining module to the controlled,
base module. Additionally, in behavior-
al programming all system behaviors
are treated equally, without the distinc-
tion between base and refinements.

Aspect-oriented programming (AOP)33
focuses on implementing cross-cut-
ting concerns as separate modules
that can modify the behavior of base
application modules. AOP’s relation
to superimposition was pointed out
in Katz and Gil.32 We believe behav-
ioral programming can contribute
toward implementing symmetric as-
pects, complementing the currently
prevalent asymmetric approach that
distinguishes base code from aspects.
In addition, while behavioral program-
ming allows the triggering of behaviors
by sequences of events, in present AOP
implementations, join-points com-
monly represent individual events, and
triggering behaviors following rich se-
quences of events requires non-trivial
state management in the aspect code.

In robotics and hybrid-control there
are behavior-based architectures, in-
cluding Brooks’s subsumption archi-
tecture,9 Branicky’s behavioral program-

which is fully synchronized internally,
and where the communication be-
tween nodes is carried out by external
events. The resulting system will still
be incremental, in that new functional-
ity can be implemented by adding sce-
narios to different behavior nodes to
generate and interpret (new) external
events, with little or no modification to
existing ones.

Consider a manager-employee rela-
tion in a corporation. Each of the two
is constantly driven by a multitude of
(personal) behaviors, but without par-
ticipation in each other‘s decisions.
The overhead of a communication pro-
tocol, the delays in reacting to messag-
es while continuing autonomous work,
and indeed, the occasional correctable
misunderstanding, are tolerable, and
are balanced with the efficiency and ef-
ficacy afforded by autonomy.

The assignment of b-threads to
nodes should allow for discovering and
dealing with synchronization issues
in a local manner, using both model
checking and standard development
and testing techniques. The division
into behavior nodes also simplifies pri-
ority assignment, in that one needs to
consider priorities only within a node.
Different behavior nodes may be as-
sociated with different time-scales,
reducing synchronization delays.26
For example, a behavior node for han-
dling a multistop travel itinerary of a
quadrotor may synchronize at a much
slower pace than the one responsible
for stabilizing the aircraft at all times.
This division may help also in the run-
time detection of runaway b-threads,
by using node-specific timers.

The concept of behavior nodes
that communicate only via events also
makes it easier to avoid race condi-
tions. In this context it should be noted
that race conditions are completely
avoided in behavioral programming if
behaviors communicate only through
events, and do not use host language
facilities to share data.26

Related Work and Future Directions
In some languages (for example, work-
flow engines or simulation specifica-
tions) scenarios and behaviors may be
encoded quite directly and visibly. In
others (for example, procedural and ob-
ject oriented programming, functional
programming and logic programming)

review articles

juLy 2012 | voL. 55 | no. 7 | CommuniCations oF the aCm 99

ming,8 and leJOS,37 which construct
systems from behaviors (see the review
in Arkin1). Our behavioral programming
approach may serve as a formalism,
implementation, or possible extension,
of some coordination and arbitration
components in these architectures.

The test-driven or behavior-driven
development methodologies (for ex-
ample, JBehave, see http://jbehave.
org) emphasize the importance of ar-
ticulating scenarios of expected over-
all system behavior early in develop-
ment. As the formal description of
scenarios is shown to be valuable, we
propose that with behavioral program-
ming it may be possible to actually use
such specifications as part of the de-
veloped system.

We feel that a key contribution of
behavioral programming to estab-
lished programming paradigms seems
to be the addition of a concise and au-
tonomous way for a process to block, or
veto, events that other processes may
attempt to trigger. In common pub-
lish/subscribe mechanisms, for exam-
ple, such blocking would require ad-
ditional inter-process communication.
In research to be published separately,
we prove that the explicit blocking idi-
om can make behavioral programs ex-
ponentially more succinct (in the num-
ber of states) than traditional publish/
subscribe idioms.

Clearly, behavioral programming
principles can be implemented in other
languages and environments. We view
the approach as an enrichment of, not
an alternative to, current programming
approaches. In particular, constructs
like semaphores/rendezvous, chan-
nels/message queues, and threads/con-
tinuations, can be used to implement
and to complement the synchroniza-
tion and blocking of behavioral pro-
gramming. More specifically, in rich
decentralized applications, behavioral
programming can coexist with actor-
oriented, agent-oriented, and other
concepts that enable coordination of
concurrent processes (see, for example,
the survey in Bordini et al.6).

In this context, the main point
about behavioral programming is its
focus on interweaving independent
behaviors to yield a desired run (a se-
quence of events), and the lesser focus
on issues related to parallel execution
of independent behaviors and the re-

sulting performance gains. In fact,
some implementations of the behav-
ioral execution mechanism are sin-
gle-threaded. It would be interesting
to explore the synergy of behavioral
programming with such languages,
which could be done, for example, by
introducing blocking and synchro-
nization idioms into non-behavioral
platforms and using established plat-
forms to connect behaviorally pro-
grammed nodes.

The execution semantics of behav-
ioral programming has similarities
to the event-based scheduling of Sys-
temC,39 which performs co-routine
scheduling in three phases, evaluation,
update, and notification, as follows: all
runnable processes are run, one at a
time, up to a synchronization point;
queued updates are recorded; and,
processes affected by these updates are
then made runnable.

The BIP language (behavior, inter-
action, priority) and the concept of glue
for assembling components proposed
by Sifakis and his colleagues (see, for
example, Bliudze and Sifakis5) pursue
goals similar to ours. Though some of
the terminology is similar, the specifics
are different. BIP focuses on creating a
system that is correct-by-construction
with regard to safety properties like
freedom from deadlock, while behav-
ioral programming concentrates on
programming in a natural way, and
turns to other techniques, including
model checking, to discover and re-
solve potential conflicts. A possible
research direction involves adding syn-
chronization and blocking as composi-
tion idioms of BIP.

Finally, behavioral programming
may be suitable for software projects
that call for feature-oriented develop-
ment40 and product-line packaging.
For example, an expert version of a
game-playing program could differ
from the novice version by simply in-
cluding behavior threads for addition-
al strategies. In Harel et al.25 we discuss
behavioral programming in relation
to additional programming languages
and models.

As to application domains, we note
how features of behavioral program-
ming contribute to making it useful for
particular domains, as follows. Coding
inter-object scenarios can be useful,
for example, for orchestrating valves,

We believe
that behavioral
programming can
contribute toward
implementing
symmetric aspects,
complementing the
currently prevalent
asymmetric
approach that
distinguishes base
code from aspects.

i
l

l
u

s
t

r
a

t
i

o
n

 b
y

 l
e

a
n

d
r

o
 C

a
s

t
e

l
a

o

100 communications of the acm | july 2012 | vol. 55 | no. 7

review articles

pumps, and the like in automation and
process control. The ability to pack dis-
tinct, seemingly unrelated behaviors
into a single operating entity seems
promising in areas like robotics, self-
guided vehicles, and the modeling of
biological systems. The combination
of reactivity and rich scripts can be ap-
plied to information-system manage-
ment including workflow control, event
processing, root-cause analysis, and
automated configuration, among oth-
ers. Finally, the ability to trace events
in the context of their respective sce-
narios, may allow decision-making ap-
plications to explain their behavior and
facilitate ongoing human validation.

Behavioral programming may also
accommodate customization as part
of the development cycle, where end-
users can enhance, change, or remove
functionality of delivered systems (for
example, smartphones), by coding or
downloading new behaviors without
accessing the core product code.

As a general paradigm, behavioral
programming is still in its infancy. It
has been applied to a relatively small
number of projects, and the existing
tools are not yet of commercial power.
More research and development is
needed in expanding implementations
in a variety of programming contexts
and for larger real-world applications.
We should also experiment with the
collaboration of multiple development
groups, and expand the work on formal
verification, synthesis, performance
and scalability, automated learning
and adaptability, the use of natural lan-
guage, and enhanced play-in.

We feel that the natural incremental
development afforded by behavioral
programming could become valuable
for novices and seasoned programmers
alike. We hope the paradigm, with its
current implementations in LSC, Java,
and other platforms, contributes to the
vision of liberating programming,16 and
that this article will encourage debate
about the ideas, as well as further re-
search and development.

acknowledgments
David Harel thanks Werner Damm and
Rami Marelly for the wonderful col-
laborations of 1998–1999 and 2000–
2003, respectively, without which the
ideas described here would not exist.
We are grateful to Shai Arogeti, Yoram

Atir, Michael Bar-Sinai, Daniel Barkan,
Dan Brownstein, Nir Eitan, Michal
Gordon, Amir Kantor, Hillel Kugler,
Robby Lampert, Shahar Maoz, Yaarit
Natan, Amir Nissim, Yaniv Saar, Avital
Sadot, Itai Segall, Nir Svirsky, Smadar
Szekely, Moshe Vardi, Moshe Wein-
stock, Guy Wiener, and Guy Weiss for
their valuable comments and contri-
butions throughout the development
of this article and the ideas behind it.
Thanks to Shmuel Katz for insights on
positioning behavioral programming
relative to aspect-orientation. We also
thank the anonymous reviewers for
their valuable suggestions.

Harel’s and Marron’s research was
supported in part by the John von Neu-
mann Minerva Center for the Develop-
ment of Reactive Systems at the Weiz-
mann Institute of Science, and by an
Advanced Research Grant to DH from
the European Research Council (ERC)
under the European Community’s
FP7 Programme. Weiss’s research was
supported by the Lynn and William
Frankel Center for Computer Science
at Ben-Gurion University and by a rein-
tegration (IRG) grant under the Euro-
pean Community’s FP7 Programme.

References
1. Arkin, R.C. Behavior-Based Robotics. MIT Press, 1998.
2. Atir, Y. and Harel, D. Using LSCs for scenario authoring

in tactical simulators. In Summer Computer
Simulation Conference. Soc. for Comp. Simulation Int.,
2007.

3. Barak, D., Harel, D. and Marelly, R. Interplay:
Horizontal scale-up and transition to design
in scenario-based programming. Lectures on
Concurrency and Petri Nets, (2004), 66–86.

4. Berry, G. and Cosserat, L. The Esterel synchronous
programming language and its mathematical
semantics. In Seminar on Concurrency, Springer,
1985, 389–448.

5. Bliudze, S. and Sifakis, J. A notion of glue expressiveness
for component-based systems. CONCUR, 2008.

6. Bordini, R.H., Dastani, M. Dix, J. and Seghrouchni,
A.E.F. Multi-Agent Programming: Languages, Tools
and Applications. Springer, 2009.

7. Bouge, L. and Francez, N. A compositional approach to
superimposition. In POPL, 1988.

8. Branicky, M.S. Behavioral programming. In Working
Notes AAAI Spring Symp. on Hybrid Sys. and AI, 1999.

9. Brooks, R. A robust layered control system for a mobile
robot. IEEE J. of Robotics and Automation 2, 1 (1986).

10. Bunker, A., Gopalakrishnan, G. and Slind, K. Live
sequence charts applied to hardware requirements
specification and verification. Int. J. on Software Tools
for Technology Transfer 7, 4 (2005).

11. Damm, W. and Harel, D. LSCs: Breathing Life into
Message Sequence Charts. J. on Formal Methods in
System Design 19, 1 (2001).

12. Eitan, N., Gordon, M., Harel, D., Marron, A. and Weiss,
G. On visualization and comprehension of scenario-
based programs. ICPC, 2011.

13. Eitan, N. and Harel, D. Adaptive behavioral programming.
IEEE Int. Conf. on Tools with Artificial Intelligence, 2011.

14. Gordon, M., Marron, A., and Meerbaum-Salant, O.
Spaghetti for the main course? Observations on
naturalness of scenario-based programming. ITICSE.
To appear July 2012.

15. Harel, D. From play-in scenarios to code: An achievable
dream. IEEE Computer 34, 1 (2001).

16. Harel, D. Can programming be liberated, period? IEEE

Computer 41, 1 (2008).
17. Harel, D., Katz, G., Marron, A. and Weiss, G. Non-

intrusive repair of reactive programs. ICECCS. To
appear July 2012.

18. Harel, D., Kleinbort, A. and Maoz, S. S2A: A compiler for
multi-modal UML sequence diagrams. Fundamental
Approaches to Software Engineering, 2007.

19. Harel, D., Kugler, H., Marelly, R. and Pnueli, A. Smart
play-out of behavioral requirements. FMCAD, 2002.

20. Harel, D., Lampert, R., Marron, A. and Weiss, G. Model-
checking behavioral programs. In EMSOFT, 2011.

21. Harel, D. and Marelly, R. Come, Let’s Play: Scenario-
Based Programming Using LSCs and the Play-Engine.
Springer, 2003.

22. Harel, D. and Maoz, S. Assert and negate revisited:
Modal semantics for UML sequence diagrams.
Software and System Modeling 7, 2 (2008), 237–252.

23. Harel, D., Maoz, A., Szekely, S. and Barkan, D. PlayGo:
Towards a comprehensive tool for scenario based
programming. ASE, 2010.

24. Harel, D., Marron, A., Nissim, A. and Weiss, G.
Combining behavioral programming and fuzziness
for hybrid control systems. In Proc. 2012 IEEE
International Conference on Fuzzy Systems. To appear
June 2012.

25. Harel, D., Marron, A. and Weiss, G. Programming
coordinated scenarios in Java. ECOOP, 2010.

26. Harel, D., Marron, A., Weiss, G. and Wiener, G.
Behavioral programming, decentralized control, and
multiple time scales. AGERE!, 2011.

27. Harel, D. and Naamad, A. The STATEMATE semantics
of statecharts. TOSEM 5, 4 (1996).

28. Harel, D. and Pnueli, A. On the Development of
Reactive Systems, in Logics and Models of Concurrent
Systems. NATO ASI Series, Vol. F-13. 1985.

29. Harel, D. and Segall, I. Planned and traversable play-
out: A flexible method for executing scenario-based
programs. Tools and Algorithms for the Constr. and
Anal. of Systems, 2007.

30. Harel, D. and Segall, I. Synthesis from live sequence
chart specifications. Computer System Sciences, 78:3
(2012), 970-980.

31. Henzinger, T.A., Kirsch, C.M., Sanvido, M.A.A. and
Pree, W. From control models to real-time code using
Giotto. IEEE Control Systems Magazine 23, 1 (2003).

32. Katz, S. and Gil, J.Y. Aspects and superimpositions.
AOP Workshop at ECOOP, 1999.

33. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J.M. and Irwin, J. Aspect-oriented
programming. ECOOP, 1997.

34. Kugler, H., Plock, C. and Roberts, A. Synthesizing
biological theories. In CAV, 2011.

35. Kugler, H. and Segall, I. Compositional synthesis
of reactive systems from live sequence chart
specifications. Tools and Alg. for the Constr. and Anal.
of Systems, 2009.

36. LEJOS. Java for LEGO Mindstorms; http://lejos.
sourceforge.net/.

37. Lieberman, H. Your Wish is My Command: Programming
by Example. Morgan Kaufmann, 2001.

38. Maoz, S. and Harel, D. From multi-modal scenarios to
code: Compiling LSCs into AspectJ. In FSE, 2006.

39. OSCI. Open SystemC Initiative. IEEE 1666 Language
Reference Manual; http://www.systemc.org.

40. Prehofer, C. Feature-oriented programming: A fresh
look at objects. ECOOP, 1997.

41. Sadot, A., Fisher, J., Barak, D. Admanit, Y. Stern, M.J.,
Hubbard, E.J.A and Harel, D. Toward verified biological
models. IEEE/ACM Trans. Comput. Biology Bioinform
5, 2 (2008).

42. Shimony, B., Nikolaidis, I., Gburzynski, P. and Stroulia,
E. On coordination tools in the PicOS tuples system.
SESENA, 2011.

43. Wiener, G., Weiss, G. and Marron, A. Coordinating and
visualizing independent behaviors in Erlang. In 9th ACM
SIGPLAN Erlang Workshop, 2010.

David Harel (dharel@weizmann.ac.il) is The William
Sussman Professorial Chair in the Department of
Computer Science and Applied Mathematics at
The Weizmann Institute of Science, Rehovot, Israel.

Assaf Marron (assaf.marron@weizmann.ac.il) is a
researcher at The Weizman Institute of Science, Rehovot,
Israel.

Gera Weiss (geraw@cs.bgu.ac.il) is an assistant professor
in the Department of Computer Science at Ben Gurion
University of the Negev, Be’er Sheva, Israel.

© 2012 ACM 0001-0782/12/07 $15.00

