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Behavioral 
Programming

Doi:10.1145/2209249.2209270

A novel paradigm for programming reactive 
systems centered on naturally specified 
modular behavior.

BY DaViD haReL, assaF maRRon, anD GeRa Weiss

sPeLLing oUT The requirements for a software system 
under development is not an easy task, and translating 
captured requirements into correct operational software 
can be even harder. Many technologies (languages, 
modeling tools, programming paradigms) and 
methodologies (agile, test-driven, model-driven) were 
designed, among other things, to help address these 
challenges. One widely accepted practice is to formalize 
requirements in the form of use cases and scenarios. 
Our work extends this approach into using scenarios 
for actual programming. Specifically, we propose 
scenario-coding techniques and design approaches for 
constructing reactive systems28 incrementally from their 
expected behaviors.

The work on behavioral programming began 
with scenario-based programming, a way to create 
executable specifications of reactive systems, 
introduced through the language of live sequence 
charts (LSC) and its Play-Engine implementation.11,21 
The initial purpose was to enable testing and refining 
specifications and prototypes, and it was later 
extended toward building actual systems. To this end, 
the underlying behavioral principles have also been 
implemented in Java via the BPJ package25 and in 
additional environments,26,34,42,43 adding a programming 
point of view to that of requirement specification.  

To illustrate the naturalness of con-
structing systems by composing be-
haviors, consider how children may be 
taught, step-by-step, to play strategy 
games (See Gordon et al.14). For exam-
ple, in teaching the game of Tic-Tac-
Toe, we first describe rules of the game, 
such as:

EnforceTurns: To play, one player 
marks a square in a 3 by 3 grid with X, 
then the other player marks a square 
with O, then X plays again, and so on;

SquareTaken: Once a square is 
marked, it cannot be marked again;

DetectXWin/DetectOWin: When 
a player places three of his or her marks 
in a horizontal, vertical, or diagonal 
line, the player wins; 

Now we may already start playing. 
Later, the child may infer, or the teach-
er may suggest, some tactics:

AddThirdO: After placing two Os in 
a line, the O player should try to mark 
the third square (to win the game);

PreventThirdX: After the X player 
marks two squares in a line, the O play-
er should try to mark the third square 
(to foil the attack); and

DefaultOMoves: When other tac-
tics are not applicable, player O should 
prefer the center square, then the cor-

 key insights

  Behavioral programming is a novel, 
language-independent paradigm for 
programming reactive systems, centered 
on natural and incremental specification 
of behavior, and implemented in the visual 
formalism of live sequence charts (LsC), 
and in the BPJ Java package.

  the approach allows coding 
applications as multi-modal scenarios, 
each corresponding to an individual 
requirement, specifying what can, must, 
or may not happen following certain 
sequences of events.

  to facilitate full behavioral modularity 
via the independent coding of separate 
facets of behavior, all scenarios run 
simultaneously, and all are consulted at 
every decision point during execution.

  the paradigm is supported by tools  
for debugging, execution planning,  
learning-based adaptivity, and  
model-checking for early detection of 
conflicting and incomplete requirements. 
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ners, and mark an edge square only 
when there is no other choice.

Such required behaviors can be cod-
ed in executable software modules using 
behavioral programming idioms and 
infrastructure, as we will detail. Full be-
havioral implementations of the game 
exist in Java25 and Erlang.43 In Harel et 
al.20 we show how model-checking tech-
nologies allow discovery of unhandled 
scenarios, enabling the user to incre-
mentally develop behaviors for new tac-
tics (and forgotten rules) until a software 

system is achieved that plays legally and 
assures the computer never loses. 

This example already suggests the 
following advantages of behavioral 
programming. First, we were able to 
code the application incrementally in 
modules that are aligned with the re-
quirements (game rules and tactics), 
as perceived by users and program-
mers. Second, we added new tactics 
and rules (and still more can be add-
ed) without changing, or even looking 
at, existing code. Third, the resulting 

product is modular, in that tactics 
and rules can be flexibly added and re-
moved to create versions with different 
functionalities, for example, to play at 
different expertise levels.

Naturally, composing behaviors 
that were programmed without di-
rect consideration of mutual de-
pendencies raises questions about 
conflicting requirements, under-
specification, and synchronization. 
We deal with these issues by using 
composition operators that allow i
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both adding and forbidding behav-
iors, analysis tools such as model 
checkers, and architectures for large-
scale applications. 

In this article, we present the prin-
ciples of behavioral programming and 
illustrate how to program behavioral 
applications in Java. We detail visual 

behavioral programming with the LSC 
language and elaborate on how one 
deals with conflicting behaviors, un-
derspecification, and a large number 
of simultaneous behaviors. We con-
clude with a comparison to other devel-
opment approaches, applications, and 
future research. 

Basic Behavioral Idioms
We propose the term behavioral ap-
plication for software consisting of 
independent components (called 
b-threads) that generate a flow of 
events via an enhanced publish/sub-
scribe protocol, as follows (see Fig-
ure 1). Each b-thread is a procedure 
that runs in parallel to the other b-
threads. When a b-thread reaches a 
point that requires synchronization, 
it waits until all other b-threads reach 
synchronization points in their own 
flow. At synchronization points, each 
b-thread specifies three sets of events: 
requested events: the thread proposes 
that these be considered for trigger-
ing, and asks to be notified when any 
of them occurs; waited-for events: the 
thread does not request these, but 
asks to be notified when any of them 
is triggered; and blocked events: the 
thread currently forbids triggering 
any of these events. 

When all b-threads are at a synchro-
nization point, an event is chosen, that 
is requested by at least one b-thread 
and is not blocked by any b-thread. 
The selected event is then triggered by 
resuming all the b-threads that either 
requested it or are waiting for it. Each 
of these resumed b-threads then pro-
ceeds with its execution, all the way to 
its next synchronization point, where 
it again presents new sets of request-
ed, waited-for and blocked events. The 
other b-threads remain at their last 
synchronization points, oblivious to 
the triggered event, until an event is 
selected that they have requested or 
are waiting for. When all b-threads are 
again at a synchronization point, the 
event selection process repeats. For a 
formal definition of this process see 
Harel et al.25,26 

When more than one event is re-
quested and not blocked, the seman-
tics of event selection may vary. For ex-
ample, the selection may be arbitrary 
or random, as in the default (a.k.a. naïve) 
semantics of the LSC Play-Engine;21 

Figure 1. A schematic view of the execution cycle of behavior threads using an enhanced 
publish/subscribe protocol.

1.  All behavior threads synchronize and place their “bids”:

 ˲  Requesting an event: proposing that the event be considered for triggering, and asking to be 

notified when it is triggered;

 ˲  Waiting for an event: without proposing its triggering, asking to be notified when the event is 

triggered;

 ˲  Blocking an event: forbidding the triggering of the event, vetoing requests of other behavior 

threads. 

2.  An event that is requested and not blocked is selected; 

3.  The behavior threads that requested or wait for the selected event are notified;

4.  The notified behavior threads progress to their next states, where they place new bids.
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behavior 
thread

behavior 
thread

behavior 
thread

behavior 
thread

Blocking

Selected Event

Figure 2. B-threads for increasing water flow. 

The first two b-threads 
request addHot and 
addCold three times, 
respectively. The third 
b-thread, Interleave, 
repeatedly waits for  
addHot while blocking 
addCold and vice versa, 
forcing alternation of  
these events. Without 
Interleave, the run would  
be three addHot followed  
by three addCold, due  
to b-thread priorities.

Figure 2. B-threads for increasing water flow. The first two b-threads request the events 
addHot and addCold three times, respectively. The third b-thread, Interleave, repeatedly 
waits for addHot while blocking addCold and vice versa, forcing alternation of these 
events. Without Interleave, the run would be three addHot followed by three addCold, 
due to b-thread priorities.

class AddHotThreeTimes extends BThread {
    public void runBThread() {
        for (int i = 1; i <= 3; i++) {
            bp.bSync( addHot, none, none );
        }
    }
}

class AddColdThreeTimes extends BThread {
    public void runBThread() {
        for (int i = 1; i <= 3; i++) {
            bp.bSync( addCold, none, none );
        }
    }
}

class Interleave extends BThread 
    public void runBThread() {
        while (true) {
            bp.bSync( none, addHot, addCold );
            bp.bSync( none, addCold, addHot );
        }
    }
} 

addHot
  addCold
addHot
  addCold
addHot
  addCold

Event log of
the coordinated run
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choices may depend on some priority 
order, as in standard BPJ execution; the 
mechanism may use look-ahead sub-
ject to desired properties of the result-
ing event sequence, as in smart play-
out19,29 in LSC; it may vary over time, 
based on learning;13 or, as in Kugler et 
al.,34 the entire execution may diverge 
into multiple concurrent paths. 

The programming idioms of re-
quest, wait for, block thus express multi-
modality. Reminiscent of modal verbs 
in a natural language (such as shall, 
can or mustn’t), they state not only what 
must be done (and how) as in standard 
programming, but also what may be 
done, and, more uniquely to behavior-
al programming, what is forbidden and 
therefore must not be done.  

Behavioral programming prin-
ciples can be readily implemented 
as part of different languages and 
programming approaches, with pos-
sible variations of idioms. In addition 
to Java with the BPJ package25 (dis-
cussed later in more detail) we have 
implemented them in the functional 
language Erlang26,43 and Shimony et 
al.42 applied them in the PicOS envi-
ronment using C. Implementations 
in visual contexts beyond the original 
Play-Engine include PlayGo23 and SBT 
by Kugler et al.34 

In behavioral programming, all 
one must do in order to start develop-
ing and experimenting with scenarios 
that will later constitute the final sys-
tem, is to determine the common set 
of events that are relevant to these sce-
narios. While this still requires con-
templation, it is often easier to answer 
the question “what are the events?” 
than “which are the objects/functions, 
etc.?” By default, events are opaque en-
tities carrying nothing but their name, 
but they may be extended with rich 
data and functionality.

Programming Behaviors In Java 
Our implementation of behavioral pro-
gramming in Java uses the BPJ pack-
age.25 With BPJ, each behavior thread 
is an instance of the class BThread. 
Events are instances of the class 
Event or classes that extend it (mainly 
for adding data to events). The logic 
of each behavior is coded as a method 
supplied by the programmer, which 
in turn invokes the method bSync to 
synchronize with other behaviors, and 

to specify its requested, waited-for and 
blocked events as follows:

bSync(requestedEvents,
         waitedForEvents, 
         blockedEvents);

By calling bSync the b-thread sus-
pends itself until all other b-threads 
are at a synchronization point and 
is resumed when an event that it re-
quested or waited for is selected, as 
described below.

To enforce predictable and repeat-
able execution, we require that the 
event selected at each synchronization 
point be uniquely defined. To this end, 
the programmer assigns a unique pri-
ority to each b-thread, and places the 
requested events of each b-thread in an 
ordered set. The event selection mech-
anism in BPJ then uses this ordering to 
choose the first event that is requested 
and not blocked.

The source code package of BPJ is 
available online at http://www.b-prog.
org with examples and video demon-
strations. 

Example: Water flow control. To il-
lustrate how these constructs can be 
used to allow new behaviors to non-
intrusively affect existing ones, con-
sider scenarios that are part of a system 

that controls hot and cold water taps, 
whose output flows are mixed. 

As shown in Figure 2, let AddHot-
ThreeTimes be a b-thread that re-
quests three times the event of opening 
the hot water-tap some small amount 
(addHot), and then stops. The b-thread 
AddColdThreeTimes performs a sim-
ilar action on the cold water tap (with 
the event addCold). To increase water 
flow in both taps more or less at the 
same time, as may be desired for keep-
ing the temperature stable, we activate 
the above b-threads alongside a third 
one, Interleave, which forces the al-
ternation of their events. Interleave 
repeatedly waits for addHot while 
blocking addCold, followed by waiting 
for addCold while blocking addHot. 
Later, we illustrate a similar program 
written in the visual LSC language.

Behavioral execution can be further 
analyzed with table-like visuals, as in 
Figure 3, which was generated by the 
TraceVis trace-comprehension and 
debugging tool.12 Briefly, b-threads 
are depicted in columns ordered by 
priority, and successive synchroniza-
tion points and associated triggered 
events appear in rows intersecting 
the b-thread columns. Each table cell 
describes a b-thread’s state at a given 
synchronization point. The sets of 

Figure 3. Visualizing an execution of the water-tap application with TraceVis. Selected 
events are marked with a green star; blocked events are marked with a red square; cells 
marked R/W/B show requested, waited for, and blocked events.
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requested, waited-for, and blocked 
events are shown in sub-cells marked 
R, W, and B respectively. In each row, 
all appearances of the selected event 
are marked with a green star, and re-
quested events that are blocked are 
marked by red squares, providing in-
sight into the rationale of event selec-
tion and b-thread progression. The cell 
containing the request that drove the 
event triggering is emphasized with 
a bold border, and cells of b-threads 
that did not advance are marked by a 
dashed border. 

Example: Strategies for Tic-Tac-Toe. 
Behavioral programming supports in-
cremental development, where new 
behaviors may be added non-intru-
sively, that is, with little or no change 
to existing code. We demonstrate this 
trait with an application for playing 
the game of Tic-Tac-Toe, described in 
detail in Harel et al.25 As outlined in 
the introduction, players X (a human) 
and O (the computer) alternately mark 
squares on a grid of 3 rows by 3 col-
umns, each attempting to place three 
of her marks in a full horizontal, verti-
cal or diagonal line. Each marking of 
a square labeled árow, colñ is repre-
sented by a move event, Xárow,colñ or 
Oárow,colñ. The events XWin, OWin 
and Draw mark possible conclusions 
of the game. 

A play of the game can be described 
as a sequence of events. For example, 
the sequence Xá0,0ñ, Oá1,1ñ, Xá2,1ñ, 
Oá0,2ñ, Xá2,0ñ, Oá1,0ñ, Xá2,2ñ, XWin, 
describes a play in which X wins, and 
whose final configuration is depicted 
in Figure 4. 

We describe the incremental de-
velopment of all the b-thread classes 
needed for the rules and tactics in 
Harel et al.25 Here, we describe the flow 
of some of the b-threads to illustrate 
how the natural language descriptions 
in the beginning of the article, can be 
translated to code which includes calls 
to bSync. The b-thread for the game-
rule SquareTaken, for example, first 
calls bSync to wait for any X or O event 
and then calls bSync again to block 
all events in the newly marked square. 
As another example, the b-thread De-
faultOMoves uses a Java loop to re-
peatedly request (by calling bSync) 
the set of all nine possible O moves 
ordered with center first, then corners, 
and then edge squares. An example of 
a longer scenario is AddThirdO, which 
waits for an O event, then waits for an-
other O event in the same line, and 
then requests an O event marking the 
third square in the line. 

To demonstrate incremental devel-
opment, consider how when we learn 
that our defense behaviors are insuffi-
cient against a corner-center-corner at-
tack (for example, Xá0,0ñ, Oá1,1ñ, Xá2,2ñ) 
for which the only defense is a coun-
terattack, we can add a b-thread as fol-
lows. To foil X’s plan, the new b-thread 
waits for this sequence of events (and 
equivalent ones), and attacks back 
by requesting the move Oá0,1ñ. Later, 
we discuss how this development ap-
proach can be enhanced using a mod-
el-checking tool.  

B-threads may autonomously watch 
out for very specific sequences of events 
embedded in larger traces, with expres-
siveness that goes beyond responding 
to a single event or to a combination 
of conditions, as is common in basic 
rule engines. Moreover, in our experi-
ence, a given “world configuration” or 
a complete event sequence may be as-
signed different meanings by different 
behaviors as they individually work to-
ward different goals. For example, De-
tectXWin and PreventThirdX can 
independently observe the same two X 
moves in the same line, but while the 
former then waits for another X move 
toward announcing a win, the latter 
proceeds to make an O move in the third 
square to prevent a loss. In fact, most of 
our Tic-Tac-Toe b-threads do not check 
the game configuration; for example, a 
b-thread DetectDraw counts any nine 

moves and declares the end of the game 
with no winner, and PreventThirdX 
ignores O moves before requesting its 
own desired move.

Focusing on a narrow facet of a be-
havior can simplify the b-thread and 
can be accomplished by instantiat-
ing copies of it with different param-
eters. For example, we implemented 
SquareTaken with an instance for 
each square, and DetectXWin with an 
instance for each permutation of three 
X events in each line.

The autonomy afforded by a narrow 
world view is facilitated also by the fact 
that all b-threads that request a given 
event at a particular synchronization 
point are notified when it occurs, and 
are unaware of whether the selected re-
quest was theirs or came from another 
b-thread. For example, a single mark-
ing of an O in a particular square could 
result from simultaneous requests by 
the AddThirdO, PreventThirdX, 
and DefaultOMoves b-threads. Us-
ing blocking and priorities, autono-
mous b-threads can “carve out” un-
desired behaviors of other b-threads, 
as, say, with coding DefaultOmoves 
to repeatedly ask for the same set of 
events without checking which one 
was triggered, and then adding the b-
thread SquareTaken. 

Example: Real-time aircraft stabili-
zation. Given the principles described 
so far, one may ask how behavioral pro-
grams deal with external events, such 
as physical ones originating in the en-
vironment, or user actions. This sec-
tion briefly introduces elements that 
can serve in a layer above the behav-
ioral programming infrastructure for 
development of real-time systems. See 
Harel et al.26 for more details.  

Behavioral applications can de-
tect external events at any time, using 
all the features available in the host 
language, and can introduce them as 
behavioral events in the next synchro-
nization point. For the integration of 
behavioral and non-behavioral parts of 
an application, we adopt the following 
scheme, based on the concept of super-
steps, which is similar to the timing se-
mantics of Statecharts.27

The first super-step begins when 
the system starts. Then, internal b-
thread-driven events are triggered 
until there are no more such events 
to trigger. At this point the behavioral 

Figure 4. the tic-tac-toe gameboard  
configuration following the move events 
Xá0,0ñ, Oá1,1ñ, Xá2,1ñ, Oá0,2ñ, 
Xá2,0ñ, Oá1,0ñ, Xá2,2ñ. 
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system halts, all b-threads are inside a 
bSync method call, and the system is 
waiting for an external event. When an 
external event occurs and introduced 
as a behavioral one, it marks the begin-
ning of a new super-step, which then 
continues until there are no events to 
trigger, and so on. We propose a con-
vention, whereby external events are 
not introduced as behavioral events as 
long as there are other internal events 
to trigger. In LSC, this is enforced by 
the Play-Engine and PlayGo tools. In 
BPJ, the programmer can assign to 
a b-thread that introduces external 
events a priority lower than that of any 
b-thread that may request other (inter-
nal) events at the same time. One may 
view the super-step as an ordered se-
quence of events, which ideally takes 
“zero time,” as in Berry’s synchrony 
hypothesis4 and in Statecharts,27 and 
similar to hybrid time sets and logical 
execution time (LET) design.31 

We now outline parts of the soft-
ware for controlling a quadrotor, an 
aircraft lifted and propelled by four 
fixed rotors, as detailed in Harel et al.26 
One of the challenges in stabilizing a 
quadrotor is using a fixed set of con-
trols, namely the rotors’ speed (RPM), 
to balance competing goals like de-
sired forces and moments along differ-
ent axes: flight direction, roll (side-to-
side), pitch (raising and lowering the 
front), and yaw (rotation of the entire 
quadrotor). These goals compete with 
each other as changes in any rotor 
speed may affect multiple forces. For 
example, changing the back rotor’s 
RPM affects the thrust, the pitch and 
the yaw. Behavioral programming al-
lows decomposing the application into 
b-threads, each of which takes care of 
only one force. For example, “when 
thrust is too low, request the increase 
of at least one of the rotors’ RPM and 
block the decrease of all rotors’ RPM” 
or “when pitch angle is too high, re-
quest the increase of the back rotor’s 
RPM or the decrease of the front rotor’s 
RPM while blocking the increase of the 
back rotor’s RPM and the decrease of 
the front rotor’s RPM.” Note that the 
event selection mechanism will weave 
these two behavior threads, in such 
a way that when the thrust is too low 
and the pitch is too high, only the back 
rotor’s RPM will increase, address-
ing both deviations. To fix deviations 

of different sizes, many small RPM-
change events occur before new input 
of desired forces is obtained in the next 
super-step. The actual b-threads are 
more involved than those shown here, 
but they maintain their naturalness 
and independence. For a fuzzy-logic 
based approach to implementing con-
trol with behavioral programming, see 
Harel et al.24

Live sequence Charts
The visual language of live sequence 
charts (LSC) introduced scenario-
based programming, and implicitly 
also the basic concepts of behavioral 
programming; see Damm and Harel.11 
One continuation of that work was the 
invention of the play-in and play-out 
techniques for constructing and exe-
cuting LSCs, which were implemented 
in the Play-Engine tool.21 A more re-
cent tool, PlayGo, has been developed, 
and is currently being extended and 
strengthened.23 The LSC approach 
also inspired the SBT tool.34 While the 
current status of these tools does not 
yet enable broad usage in real-world 
applications, the versatility of the LSC 
language has been demonstrated in 
various application domains, includ-
ing hardware, telecommunication, 
production control, tactical simula-
tors, and biological modeling.2,10,41

LSC adds liveness and execution 
semantics to behaviors described us-
ing message sequence charts (MSC) by 
extending MSC with modalities, sym-
bolic instances, and more. An MSC de-

picts behavior using vertical lifelines 
to represent objects and horizontal 
arrows for messages passed between 
them, with time flowing from top to 
bottom. This yields a partial order for 
occurrences of the events in a chart. 
However, the expressive power of MSC 
is limited,11 as these charts describe 
possible scenarios and cannot specify, 
for example, what is mandated or what 
is not allowed. In fact, given a set of 
objects and events, a system that gen-
erates all possible sequences of events 
would satisfy any MSC.

To address this, in a live sequence 
chart one can distinguish what must 
happen (called hot in LSC terminol-
ogy, and colored red) from what may 
happen (termed cold, and colored 
blue), and can also express what is not 
allowed to happen (forbidden). More-
over, event specifications that are to be 
executed in a proactive manner can be 
distinguished from ones that specify 
monitoring; that is, merely tracking 
the event. LSC also distinguishes be-
tween universal charts, which depict 
executions that are to apply to all runs, 
and existential charts—which serve as 
“examples” and are required to apply 
only to at least one run. A universal 
LSC consists of a prechart and a main 
chart, as in Figure 5. The semantics 
is that if and when the behavior de-
scribed by the prechart occurs, the 
behavior described by the main chart 
must occur too. 

Using a designated chart area, one 
can forbid occurrence of events at 

Figure 5. a universal LsC. Whenever a telephone user presses the sequence of a star,  
a digit, and send (see hexagonal prechart), the chip must retrieve the corresponding  
number from memory and call it by sending a message to the environment. if a busy  
signal is returned, the call must be tried up to three times. the events in the main chart 
may occur only in the order specified.
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certain times. There are other ways to 
forbid things from occurring; one of 
which is done by indicating that events 
in the main chart must occur only in 
the specified (partial) order. For ex-
ample, one can specify that when the 
main chart is active, events that appear 
in the chart but are not presently en-
abled cannot be triggered at that point 
in time by other charts. 

A modest view of LSC considers it 
to be a requirements and specification 
language for making assertions about 
sequences of events. In this view, a sys-
tem satisfies an LSC specification if all 
its runs satisfy all the universal charts 
in the specification, and for each exis-
tential chart, there is at least one run 
that satisfies it. 

However, the play-out technique fa-
cilitates the execution of an LSC speci-
fication, that is, a collection of charts, 
just like any computer program. Play-
out does this by tracking events that 
may be selected next in all lifelines 
in all charts, selecting and triggering 
events subject to the must/may/forbid-
den modalities, and advancing affect-
ed charts accordingly.21 As described 
in more detail below, play-out may 
be viewed as interpreting charts with 
modal events as threads of behavior 
with their requested, waited-for, and 
blocked events. 

A dialect of LSC has been designed 
to be compliant with UML 2.0,22 and 
can be defined as a profile therein. 
Instead of precharts it uses solid and 
dashed arrows to indicate whether an 

event is to be executed or is only moni-
tored, while the red and blue color 
retain their respective modalities of 
must and may. The PlayGo tool18,23 is 
currently based on this version of the 
language. Figure 6 depicts a PlayGo 
example similar to the water-tap appli-
cation discussed earlier, with the addi-
tion of the user pressing a start button 
to activate all scenarios.

Internally, the LSC play-out mecha-
nism uses the request / wait / block 
idioms for collective execution, as fol-
lows. Initially, the next enabled event 
for each lifeline in each chart is the top-
most event in the lifeline. All enabled 
events on all lifelines are considered 
waited-for. All enabled events that are 
also to be executed (and not just moni-
tored) are considered also as request-
ed. All events that are forbidden, either 
explicitly or implicitly, are considered 
blocked. An event that is requested and 
not blocked is then triggered. When 
no event can be triggered, the system 
waits for an event from the user or the 
environment. When an event is trig-
gered, a rich unification algorithm de-
termines which event specifications in 
different charts refer to that event, and 
all lifelines in which it is enabled are 
advanced to their next state. Whenever 
this advancing causes a prechart to be 
completed, the main chart portion of 
the chart is activated. When a forbid-
den event nevertheless occurs, for ex-
ample, as driven by the environment 
or the user, a violation occurs and the 
execution terminates. 

This process is often referred to 
as naïve play-out. In a more advanced 
mechanism, called smart play-out19,29 
the Play-Engine uses either model-
checking or AI planning algorithms 
to look ahead, in an attempt to select 
events in ways that do not eventually 
lead to violation of the specification 
or deadlock. 

In addition to the interpreter-like 
approach of play-out, a compiler for 
LSC has been developed, which pro-
duces executable code by compiling 
the specification into Java and weaving 
the results with AspectJ.38

One notable difference between LSC 
and the BPJ package is that BPJ benefits 
from the power of the Java host lan-
guage. By contrast, the LSC language 
provides its own constructs for objects 
and properties, flow of control, excep-
tions, variables, symbolic objects and 
messages, a notion of time, sub-chart 
scope, access to functions in other lan-
guages, and external communication.21 

Play-in. An essential element of 
programming is the process by which 
programmers perform actual coding. 
In behavioral programming, it seems 
only natural to allow this activity to 
include walking through a scenario, 
generating events and sequences 
thereof, and using them in specifying 
what we want done or forbidden. To-
ward that purpose, the LSC language 
allows a new way of coding, called 
play-in,15,21 which captures scenarios 
as follows: whenever possible, the de-
veloper actually performs the event—

Figure 6. UML-compliant LSCs. Each chart begins with the user pressing the start button. Two charts request tap-turning events, and the 
third causes their interleaving by alternately waiting for these events. Events can occur only when enabled for triggering in all charts in 
which they appear. The SYNC construct forces order between events in different lifelines.

AddHotThreeTimes

User

LSC

startButton

start()

addHot()

SYNC

hotWater

addHot()

addHot()

AddColdThreeTimes

User

LSC

startButton

start()

addCold()

SYNC

hotWater

addCold()

addCold()

Interleave

User

LSC

startButton

start()

addHot()

hotWater coldWater

addCold()

SYNC

SYNC

loop

[–1,–1]



review articles

juLy 2012  |   voL.  55  |   no.  7   |   CommuniCations oF the aCm     97

for example, by pressing “send” on a 
telephone—and the tool captures the 
event and includes it as part of the 
gradually generated LSC. The reader 
is referred to Harel and Marelly21 and 
the Web site http://www.wisdom.weiz-
mann.ac.il/~playbook for more details. 

Play-in is similar to programming 
by example37 in that both try to make 
programming easier for humans us-
ing visualization and physical actions, 
and the approaches can certainly gain 
from one another. The main differ-
ence is that programming by example 
is a way to avoid writing code in small 
programs, for educational purposes, 
where play-in is intended for use as 
part of programming modal scenar-
ios to be executed collectively as a 
complex system.

Can it Work in the Real World? 
In way of trying to tackle such ques-
tions as “can the approach deal with 
conflicts and underspecification?” or 
“can one coordinate thousands of si-
multaneous behaviors?” we outline 
some relevant research results. 

One concern associated with align-
ing application scenarios with require-
ments is that individually valid require-
ments may conflict. Thus, coding them 
independently of each other and com-
posing them without consideration 
may yield undesired joint behavior. 

We first observe that, as described, 
our approach suggests resolving con-
flicts using new b-threads and priori-
ties. For example, in Tic-Tac-Toe, the 
conflict (which may emerge very early 
in development) concerning both 
players requesting a move at the same 
time, is resolved by a b-thread that 
enforces turn alternation. Similarly, a 
conflict between a defensive move and 
a move that yields an immediate win is 
resolved by prioritizing the latter. 

Further, we present a methodol-
ogy and a supporting model-check-
ing tool (called BPmc) for verifying 
behavioral programs without having 
to first translate them into a spe-
cific input language for the model 
checker.20 Our method facilitates 
early discovery of conflicting or un-
derspecified scenarios. For example, 
when model-checking a behavioral 
Tic-Tac-Toe application, the coun-
terexample Xá0,0ñ, Oá1,1ñ, Xá0,1ñ, 
Oá0,2ñ, Xá2,0ñ, Oá2,2ñ, Xá1,0ñ suggests 

(as described earlier) that the victory 
of X could have been avoided had the 
application played Oá1,0ñ in its last 
turn, preventing the completion of 
three X marks in a line, instead of its 
default preference to mark corners. 
Note that in coding refinements and 
corrections, counterexamples pro-
vided by the tool can be used directly 
since they are sequences of events. 
See Harel et al.17 for an application of 
this property to the automatic local 
repair of behavioral programs.

From the model-checking perspec-
tive, the BPmc tool (which currently 
applies to our Java implementation of 
behavioral programming) reduces the 
size of the state-space of a Java pro-
gram using an abstraction that focuses 
on the behaviorally interesting states 
and treats transitions between them 
as atomic. To the existing standard ex-
ecution control, which consists of de-
terministic progression along a single 
path in the behavioral program state 
graph, we add two model-checking ex-
ecution modes: safety and liveness. The 
safety mode explores the different paths 
in the graph in search of a state that vio-
lates the given safety property, while 
the liveness mode seeks cycles that 
violate the given liveness property. The 
graph traversal in BPmc is carried 
out with established model check-
ing algorithms and uses the Apache 
javaflow package to save and restore 
continuations—objects that hold the 
states of participating threads—for the 
required backtracking.

Synthesis techniques have also been 
applied to LSC, in order to check for 
conflicts and, when possible, to gen-
erate a program that correctly imple-
ments a system complying with the 
specification.30,35

Model checking and planning algo-
rithms are used when running LSCs to 
help avoid conflicts when these can be 
resolved via “smart” event selection us-
ing look-ahead within a super-step.19,29 
Future research directions include 
applying BPmc to achieve look-ahead 
in Java execution too, as well as going 
beyond a single super-step in the smart 
play-out method in LSC.

As for underspecification and 
adaptability, it is well accepted in soft-
ware engineering that a requirements 
document is never really complete,16 
and that new requirements keep 

Play-in is similar 
to programming 
by example in that 
both try to make 
programming easier 
for humans using 
visualization and 
physical actions, 
and the approaches 
can certainly gain 
from one another.
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emerging as developers and users 
learn about and experiment with the 
developed system. 

Similarly to the case of conflicts, 
new requirements in behavioral pro-
gramming can often be coded as new 
behaviors. For example, while develop-
ing the quadrotor application we real-
ized that rotor speed (RPM) cannot be 
negative. We solved this by adding a 
b-thread that blocks speed reduction 
events when the speed is too low. 

Obviously, both model checking and 
the look-ahead mentioned here may 
help detect and deal with such under-
specification. The problem can also be 
handled by making the program learn 
and adapt as part of its development. 
For example, extending the semantics 
of behavioral programming with rein-
forcements allows applications that 
also specify, in addition to what should 
be done or not done at every step,  broad-
er goals.13 Reinforcements are captured 
by b-threads, each one contributing a 
narrow assessment of the current situ-
ation relative to a longer-term goal. Le-
veraging the unique structure of behav-
ioral programs, an application-agnostic 
learning mechanism translates the re-
inforcements into event-selection deci-
sions that improve over time. This abil-
ity to learn and adapt allows removal of 
the need for a total order on b-threads 
and event requests, thus simplifying 
development. For example, a salad-
making robot is specified in Eitan and 
Harel,13 with scenarios for picking up 
vegetables, and washing, cutting, and 
serving them in designated locations. 
With the help of reinforcements, the 
robot learns to perform these tasks in 
the correct order, while overcoming ob-
stacles in the kitchen and dealing with 
refueling tasks.

Another concern around behavioral 
programming execution is that if one di-
vergent b-thread (a runaway) fails to syn-
chronize, the entire application stops. 
The problem is of course aggravated 
when many behaviors are involved. 

As described in Harel et al.26 and 
following the work in Barak et al.,3 we 
expect that in large behavioral applica-
tions not all behaviors will be required 
to synchronize with each other. In-
stead, we anticipate that synchroniza-
tion requirements will be reduced by 
dividing large numbers of naturally 
specified behaviors into nodes; each of 

different modularization may cause 
scenario encodings to be more subtle; 
rendering them visible only at run-
time. One of the main contributions 
of behavioral programming is the abil-
ity to program multimodal scenarios 
incrementally using modules that are 
aligned with requirements.16 

Relative to object-oriented program-
ming, behavioral modules and events 
may involve objects, but they are not 
necessarily anchored to a single one. 
When programming behaviorally, one 
focuses on system behavior, and less 
on identifying actors. Often, behavior 
threads represent inter-object scenari-
os that are not directly visible when the 
software is implemented as methods 
of individual objects. The states of such 
scenarios often conveniently replace or 
complement data in standard objects. 

Ideas for using behaviors that are 
specified as refinements and con-
straints over other modules are dis-
cussed in the context of superimposi-
tions.7 Behavioral programming offers 
practical programming mechanisms 
for implementing implicit, indirect 
control of one behavior over all other 
relevant behaviors, without explicit 
references from a controlling or con-
straining module to the controlled, 
base module. Additionally, in behavior-
al programming all system behaviors 
are treated equally, without the distinc-
tion between base and refinements.

Aspect-oriented programming (AOP)33 
focuses on implementing cross-cut-
ting concerns as separate modules 
that can modify the behavior of base 
application modules. AOP’s relation 
to superimposition was pointed out 
in Katz and Gil.32 We believe behav-
ioral programming can contribute 
toward implementing symmetric as-
pects, complementing the currently 
prevalent asymmetric approach that 
distinguishes base code from aspects. 
In addition, while behavioral program-
ming allows the triggering of behaviors 
by sequences of events, in present AOP 
implementations, join-points com-
monly represent individual events, and 
triggering behaviors following rich se-
quences of events requires non-trivial 
state management in the aspect code. 

In robotics and hybrid-control there 
are behavior-based architectures, in-
cluding Brooks’s subsumption archi-
tecture,9 Branicky’s behavioral program-

which is fully synchronized internally, 
and where the communication be-
tween nodes is carried out by external 
events. The resulting system will still 
be incremental, in that new functional-
ity can be implemented by adding sce-
narios to different behavior nodes to 
generate and interpret (new) external 
events, with little or no modification to 
existing ones. 

Consider a manager-employee rela-
tion in a corporation. Each of the two 
is constantly driven by a multitude of 
(personal) behaviors, but without par-
ticipation in each other‘s decisions. 
The overhead of a communication pro-
tocol, the delays in reacting to messag-
es while continuing autonomous work, 
and indeed, the occasional correctable 
misunderstanding, are tolerable, and 
are balanced with the efficiency and ef-
ficacy afforded by autonomy. 

The assignment of b-threads to 
nodes should allow for discovering and 
dealing with synchronization issues 
in a local manner, using both model 
checking and standard development 
and testing techniques. The division 
into behavior nodes also simplifies pri-
ority assignment, in that one needs to 
consider priorities only within a node. 
Different behavior nodes may be as-
sociated with different time-scales, 
reducing synchronization delays.26 
For example, a behavior node for han-
dling a multistop travel itinerary of a 
quadrotor may synchronize at a much 
slower pace than the one responsible 
for stabilizing the aircraft at all times. 
This division may help also in the run-
time detection of runaway b-threads, 
by using node-specific timers. 

The concept of behavior nodes 
that communicate only via events also 
makes it easier to avoid race condi-
tions. In this context it should be noted 
that race conditions are completely 
avoided in behavioral programming if 
behaviors communicate only through 
events, and do not use host language 
facilities to share data.26

Related Work and Future Directions
In some languages (for example, work-
flow engines or simulation specifica-
tions) scenarios and behaviors may be 
encoded quite directly and visibly. In 
others (for example, procedural and ob-
ject oriented programming, functional 
programming and logic programming) 
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ming,8 and leJOS,37 which construct 
systems from behaviors (see the review 
in Arkin1). Our behavioral programming 
approach may serve as a formalism, 
implementation, or possible extension, 
of some coordination and arbitration 
components in these architectures.

The test-driven or behavior-driven 
development methodologies (for ex-
ample, JBehave, see http://jbehave.
org) emphasize the importance of ar-
ticulating scenarios of expected over-
all system behavior early in develop-
ment. As the formal description of 
scenarios is shown to be valuable, we 
propose that with behavioral program-
ming it may be possible to actually use 
such specifications as part of the de-
veloped system.

We feel that a key contribution of 
behavioral programming to estab-
lished programming paradigms seems 
to be the addition of a concise and au-
tonomous way for a process to block, or 
veto, events that other processes may 
attempt to trigger. In common pub-
lish/subscribe mechanisms, for exam-
ple, such blocking would require ad-
ditional inter-process communication. 
In research to be published separately, 
we prove that the explicit blocking idi-
om can make behavioral programs ex-
ponentially more succinct (in the num-
ber of states) than traditional publish/
subscribe idioms. 

Clearly, behavioral programming 
principles can be implemented in other 
languages and environments. We view 
the approach as an enrichment of, not 
an alternative to, current programming 
approaches. In particular, constructs 
like semaphores/rendezvous, chan-
nels/message queues, and threads/con-
tinuations, can be used to implement 
and to complement the synchroniza-
tion and blocking of behavioral pro-
gramming. More specifically, in rich 
decentralized applications, behavioral 
programming can coexist with actor-
oriented, agent-oriented, and other 
concepts that enable coordination of 
concurrent processes (see, for example, 
the survey in Bordini et al.6). 

In this context, the main point 
about behavioral programming is its 
focus on interweaving independent 
behaviors to yield a desired run (a se-
quence of events), and the lesser focus 
on issues related to parallel execution 
of independent behaviors and the re-

sulting performance gains. In fact, 
some implementations of the behav-
ioral execution mechanism are sin-
gle-threaded. It would be interesting 
to explore the synergy of behavioral 
programming with such languages, 
which could be done, for example, by 
introducing blocking and synchro-
nization idioms into non-behavioral 
platforms and using established plat-
forms to connect behaviorally pro-
grammed nodes. 

The execution semantics of behav-
ioral programming has similarities 
to the event-based scheduling of Sys-
temC,39 which performs co-routine 
scheduling in three phases, evaluation, 
update, and notification, as follows: all 
runnable processes are run, one at a 
time, up to a synchronization point; 
queued updates are recorded; and, 
processes affected by these updates are 
then made runnable. 

The BIP language (behavior, inter-
action, priority) and the concept of glue 
for assembling components proposed 
by Sifakis and his colleagues (see, for 
example, Bliudze and Sifakis5) pursue 
goals similar to ours. Though some of 
the terminology is similar, the specifics 
are different. BIP focuses on creating a 
system that is correct-by-construction 
with regard to safety properties like 
freedom from deadlock, while behav-
ioral programming concentrates on 
programming in a natural way, and 
turns to other techniques, including 
model checking, to discover and re-
solve potential conflicts. A possible 
research direction involves adding syn-
chronization and blocking as composi-
tion idioms of BIP.

Finally, behavioral programming 
may be suitable for software projects 
that call for feature-oriented develop-
ment40 and product-line packaging. 
For example, an expert version of a 
game-playing program could differ 
from the novice version by simply in-
cluding behavior threads for addition-
al strategies. In Harel et al.25 we discuss 
behavioral programming in relation 
to additional programming languages 
and models.

As to application domains, we note 
how features of behavioral program-
ming contribute to making it useful for 
particular domains, as follows. Coding 
inter-object scenarios can be useful, 
for example, for orchestrating valves, 

We believe 
that behavioral 
programming can 
contribute toward 
implementing 
symmetric aspects, 
complementing the 
currently prevalent 
asymmetric 
approach that 
distinguishes base 
code from aspects.
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pumps, and the like in automation and 
process control. The ability to pack dis-
tinct, seemingly unrelated behaviors 
into a single operating entity seems 
promising in areas like robotics, self-
guided vehicles, and the modeling of 
biological systems. The combination 
of reactivity and rich scripts can be ap-
plied to information-system manage-
ment including workflow control, event 
processing, root-cause analysis, and 
automated configuration, among oth-
ers. Finally, the ability to trace events 
in the context of their respective sce-
narios, may allow decision-making ap-
plications to explain their behavior and 
facilitate ongoing human validation. 

Behavioral programming may also 
accommodate customization as part 
of the development cycle, where end-
users can enhance, change, or remove 
functionality of delivered systems (for 
example, smartphones), by coding or 
downloading new behaviors without 
accessing the core product code.

As a general paradigm, behavioral 
programming is still in its infancy. It 
has been applied to a relatively small 
number of projects, and the existing 
tools are not yet of commercial power. 
More research and development is 
needed in expanding implementations 
in a variety of programming contexts 
and for larger real-world applications. 
We should also experiment with the 
collaboration of multiple development 
groups, and expand the work on formal 
verification, synthesis, performance 
and scalability, automated learning 
and adaptability, the use of natural lan-
guage, and enhanced play-in. 

We feel that the natural incremental 
development afforded by behavioral 
programming could become valuable 
for novices and seasoned programmers 
alike. We hope the paradigm, with its 
current implementations in LSC, Java, 
and other platforms, contributes to the 
vision of liberating programming,16 and 
that this article will encourage debate 
about the ideas, as well as further re-
search and development.
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